1932

Abstract

This review is devoted to recent developments in the statistical analysis of spherical data, strongly motivated by applications in cosmology. We start from a brief discussion of cosmological questions and motivations, arguing that most cosmological observables are spherical random fields. Then, we introduce some mathematical background on spherical random fields, including spectral representations and the construction of needlet and wavelet frames. We then focus on some specific issues, including tools and algorithms for map reconstruction (i.e., separating the different physical components that contribute to the observed field), geometric tools for testing the assumptions of Gaussianity and isotropy, and multiple testing methods to detect contamination in the field due to point sources. Although these tools are introduced in the cosmological context, they can be applied to other situations dealing with spherical data. Finally, we discuss more recent and challenging issues, such as the analysis of polarization data, which can be viewed as realizations of random fields taking values in spin fiber bundles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-040522-093748
2024-04-22
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/statistics/11/1/annurev-statistics-040522-093748.html?itemId=/content/journals/10.1146/annurev-statistics-040522-093748&mimeType=html&fmt=ahah

Literature Cited

  1. Adler RJ, Taylor JE. 2007.. Random Fields and Geometry. New York:: Springer
  2. Adler RJ, Taylor JE. 2011.. Topological Complexity of Smooth Random Functions. New York:: Springer
  3. Appleby S, Park C, Pranav P, Hong SE, Hwang HS, et al. 2022.. Minkowski functionals of SDSS-III BOSS: hints of possible anisotropy in the density field?. Astrophys. J. 928:(2):108
    [Crossref] [Google Scholar]
  4. Atkinson K, Han W. 2012.. Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. New York:: Springer
  5. Axelsson M, Ihle HT, Scodeller S, Hansen FK. 2015.. Testing for foreground residuals in the Planck foreground cleaned maps: a new method for designing confidence masks. . Astron. Astrophys. 578::A44
    [Crossref] [Google Scholar]
  6. Baldi P, Kerkyacharian G, Marinucci D, Picard D. 2009a.. Asymptotics for spherical needlets. . Ann. Stat. 37::115071
    [Google Scholar]
  7. Baldi P, Kerkyacharian G, Marinucci D, Picard D. 2009b.. Subsampling needlet coefficients on the sphere. . Bernoulli 15::43863
    [Crossref] [Google Scholar]
  8. Baldi P, Marinucci D. 2007.. Some characterizations of the spherical harmonics coefficients for isotropic random fields. . Stat. Probab. Lett. 77:(5):49096
    [Crossref] [Google Scholar]
  9. Baldi P, Rossi M. 2014.. Representation of Gaussian isotropic spin random fields. . Stoch. Proc. Appl. 124:(5):191041
    [Crossref] [Google Scholar]
  10. Benjamini Y, Hochberg Y. 1995.. Controlling the false discovery rate: a practical and powerful approach to multiple testing. . J. R. Stat. Soc. Ser. B 57::289300
    [Crossref] [Google Scholar]
  11. Bobin J, Sureau F, Starck JL, Rassat A, Paykari P. 2014.. Joint Planck and WMAP CMB map reconstruction. . Astron. Astrophys. 563::A105
    [Crossref] [Google Scholar]
  12. Brockwell PJ, Davis RA. 1991.. Time Series: Theory and Methods. New York:: Springer. , 2nd ed..
  13. Cammarota V, Marinucci D. 2015.. The stochastic properties of 1-regularized spherical Gaussian fields. . Appl. Comput. Harmon. Anal. 38:(2):26283
    [Crossref] [Google Scholar]
  14. Cammarota V, Marinucci D, Wigman I. 2016.. On the distribution of the critical values of random spherical harmonics. . J. Geom. Anal. 26::3252324
    [Crossref] [Google Scholar]
  15. Caponera A. 2022.. Asymptotics for isotropic Hilbert-valued spherical random fields. . arXiv:2212.02329 [math.PR]
  16. Carones A, Carrón Duque J, Marinucci D, Migliaccio M, Vittorio N. 2022a.. Minkowski functionals of CMB polarisation intensity with Pynkowski: theory and application to Planck data. . arXiv:2211.07562 [astro-ph.CO]
  17. Carones A, Migliaccio M, Marinucci D, Vittorio N. 2022b.. Analysis of NILC performance on B-modes data of sub-orbital experiments. . arXiv:2208.12059 [astro-ph.CO]
  18. Carones A, Migliaccio M, Puglisi G, Baccigalupi C, Marinucci D, et al. 2022c.. Multi-clustering needlet-ILC for CMB B-modes component separation. . arXiv:2212.04456 [astro-ph.CO]
  19. Carrón Duque J, Buzzelli A, Fantaye Y, Marinucci D, et al. 2019.. Point source detection and false discovery rate control on CMB maps. . Astron. Comput. 28::100310
    [Crossref] [Google Scholar]
  20. Carrón Duque J, Carones A, Marinucci D, Migliaccio M, Vittorio N. 2023.. Minkowski functionals in SO(3) for spin-2 CMB polarisation fields. . arXiv:2301.13191 [astro-ph.CO]
  21. Cheng D, Cammarota V, Fantaye Y, Marinucci D, Schwartzman A. 2020.. Multiple testing of local maxima for detection of peaks on the (celestial) sphere. . Bernoulli 26:(1):3160
    [Crossref] [Google Scholar]
  22. Cheng D, Schwartzman A. 2015.. Distribution of the height of local maxima of Gaussian random fields. . Extremes 18::21340
    [Crossref] [Google Scholar]
  23. Cheng D, Schwartzman A. 2017.. Multiple testing of local maxima for detection of peaks in random fields. . Ann. Stat. 45:(2):52956
    [Crossref] [Google Scholar]
  24. Cheng D, Schwartzman A. 2018.. Expected number and height distribution of critical points of smooth isotropic Gaussian random fields. . Bernoulli 24:(4B):342246
    [Crossref] [Google Scholar]
  25. Dodelson S. 2003.. Modern Cosmology. London:: Academic
  26. Durrer R. 2008.. The Cosmic Microwave Background. Cambridge, UK:: Cambridge Univ. Press
  27. Euclid Collab. 2023.. Euclid Preparation XXIX: forecasts for ten different higher-order weak lensing statistics. . arXiv:2301.12890 [astro-ph.CO]
  28. Geller D, Marinucci D. 2010.. Spin wavelets on the sphere. . J. Fourier Anal. Appl. 16:(6):84084
    [Crossref] [Google Scholar]
  29. Geller D, Mayeli A. 2009a.. Besov spaces and frames on compact manifolds. . Indiana Univ. Math. J. 58::200342
    [Crossref] [Google Scholar]
  30. Geller D, Mayeli A. 2009b.. Continuous wavelets on compact manifolds. . Math. Z. 262::895927
    [Crossref] [Google Scholar]
  31. Geller D, Mayeli A. 2009c.. Nearly tight frames and space-frequency analysis on compact manifolds. . Math. Z. 263::23564
    [Crossref] [Google Scholar]
  32. Górski KM, Hivon E, Banday AJ, Wandelt BD, Hansen FK, et al. 2005.. HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. . Astrophys. J. 699::75971
    [Crossref] [Google Scholar]
  33. Grewal N, Zuntz J, Tröster T, Amon A. 2022.. Minkowski functionals in joint galaxy clustering & weak lensing analyses. . Open J. Astrophys. 5:(1). https://doi.org/10.21105/astro.2206.03877
    [Google Scholar]
  34. Hazumi M, Ade PAR, Adler A, Allys E, Arnold K, et al. 2020.. LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization. . In Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave, Proceedings, Vol. 11443, ed. M Lystrup, MD Perrin, N Batalha, N Siegler, EC Tong . Bellingham, WA:: SPIE
    [Google Scholar]
  35. Krachmalnicoff N, Puglisi G. 2021.. ForSE: a GAN based algorithm for extending CMB foreground models to sub-degree angular scales. . Astrophys. J. 911::42. Erratum. 2023.. Astrophys. J.
    [Google Scholar]
  36. Leonenko N, Sakhno L. 2012.. On spectral representations of tensor random fields on the sphere. . Stoch. Anal. Appl. 30:(1):4466
    [Crossref] [Google Scholar]
  37. Lerario A, Marinucci D, Rossi M, Stecconi M. 2022.. Geometry and topology of spin random fields. . arXiv:2207.08413 [math.PR]
  38. Liu W, Jiang A, Fang W. 2023.. Probing massive neutrinos with the Minkowski functionals of the galaxy distribution. . arXiv:2302.08162 [astro-ph.CO]
  39. Loh WL. 2005.. Fixed-domain asymptotics for a subclass of Matérn-type Gaussian random fields. . Ann. Stat. 33::234494
    [Crossref] [Google Scholar]
  40. Loh WL. 2015.. Estimating the smoothness of a Gaussian random field from irregularly spaced data via higher-order quadratic variations. . Ann. Stat. 43::276694
    [Crossref] [Google Scholar]
  41. Malyarenko A. 2013.. Invariant Random Fields on Spaces with a Group Action. New York:: Springer
  42. Marinucci D, Peccati G. 2011.. Random Fields on the Sphere. Cambridge, UK:: Cambridge Univ. Press
  43. Marinucci D, Peccati G. 2013.. Mean square continuity on homogeneous spaces of compact groups. . Electron. Commun. Probab. 18:(37):110
    [Google Scholar]
  44. Marinucci D, Pietrobon D, Balbi A, Baldi P, Cabella P, et al. 2008.. Spherical needlets for CMB data analysis. . Mon. Not. R. Astron. Soc. 383::53945
    [Crossref] [Google Scholar]
  45. Martire FA, Banday AJ, Martínez-González E, Barreiro RB. 2023.. Morphological analysis of the polarized synchrotron emission with WMAP and Planck. . arXiv:2301.08041 [astro-ph.CO]
  46. Narcowich FJ, Petrushev P, Ward JD. 2006a.. Decomposition of Besov and Triebel–Lizorkin spaces on the sphere. . J. Funct. Anal. 238::53064
    [Crossref] [Google Scholar]
  47. Narcowich FJ, Petrushev P, Ward JD. 2006b.. Localized tight frames on spheres. . SIAM J. Math. Anal. 38::57494
    [Crossref] [Google Scholar]
  48. Newman ET, Penrose R. 1966.. Note on the Bondi–Metzner–Sachs group. . J. Math. Phys. 7::86370
    [Crossref] [Google Scholar]
  49. Oppizzi F, Renzi A, Liguori M, Hansen FK, Baccigalupi C, et al. 2020.. Needlet thresholding methods in component separation. . J. Cosmol. Astropart. Phys. 2020:(03):054
    [Crossref] [Google Scholar]
  50. Paoletti D, Finelli F, Valiviita J, Hazumi M. 2022.. Planck and BICEP/Keck array 2018 constraints on primordial gravitational waves and perspectives for future B-mode polarization measurements. . Phys. Rev. D 106:(8):083528
    [Crossref] [Google Scholar]
  51. Planck Collab. 2015.. Planck 2015 results. XXVI. The second Planck catalogue of compact sources. . Astron. Astrophys. 594::A26
    [Google Scholar]
  52. Planck Collab. 2020a.. Planck 2018 results. I. Overview and the cosmological legacy of Planck. . Astron. Astrophys. 641::A1
    [Crossref] [Google Scholar]
  53. Planck Collab. 2020b.. Planck 2018 results. IV. Diffuse component separation. . Astron. Astrophys. 641::A4
    [Crossref] [Google Scholar]
  54. Planck Collab. 2020c.. Planck 2018 results. V. CMB power spectra and likelihoods. . Astron. Astrophys. 641::A5
    [Crossref] [Google Scholar]
  55. Planck Collab. 2020d.. Planck 2018 results. VI. Cosmological parameters. . Astron. Astrophys. 641::A6
    [Crossref] [Google Scholar]
  56. Planck Collab. 2020e.. Planck 2018 results. VII. Isotropy and statistics of the CMB. . Astron. Astrophys. 641::A7
    [Crossref] [Google Scholar]
  57. Planck Collab. 2020f.. Planck 2018 results. IX. Constraints on primordial non-Gaussianity. . Astron. Astrophys. 641::A9
    [Crossref] [Google Scholar]
  58. Remazeilles M, Delabrouille J, Cardoso JF. 2011.. Foreground component separation with generalized internal linear combination. . Mon. Not. R. Astron. Soc. 418:(1):46776
    [Crossref] [Google Scholar]
  59. Schwartzman A, Gavrilov Y, Adler RJ. 2011.. Multiple testing of local maxima for detection of peaks in 1D. . Ann. Stat. 39::3290319
    [Crossref] [Google Scholar]
  60. Scodeller S, Hansen FK. 2012.. Masking versus removing point sources in CMB data: the source corrected WMAP power spectrum from new extended catalogue. . Astrophys. J. 761::119
    [Crossref] [Google Scholar]
  61. Scodeller S, Hansen FK, Marinucci D. 2012.. Detection of new point sources in WMAP 7 year data using internal templates and needlets. . Astrophys. J. 753::27
    [Crossref] [Google Scholar]
  62. Scodeller S, Rudjord O, Hansen FK, Marinucci D, Geller D, Mayeli A. 2011.. Introducing Mexican needlets for CMB analysis: issues for practical applications and comparison with standard needlets. . Astrophys. J. 733::121
    [Crossref] [Google Scholar]
  63. Secrest N, von Hausegger S, Rameez M, Mohayaee R, Sarkar S. 2022.. A challenge to the standard cosmological model. . Astrophys. J. Lett. 937::L31
    [Crossref] [Google Scholar]
  64. Shevchenko R, Todino AP. 2023.. Asymptotic behaviour of level sets of needlet random fields. . Stoch. Proc. Appl. 155::268318
    [Crossref] [Google Scholar]
  65. Spina B, Porciani C, Schimd C. 2021.. The HI-halo mass relation at redshift z ∼ 1 from the Minkowski functionals of 21-cm intensity maps. . Mon. Not. R. Astron. Soc. 505:(3):3492504
    [Crossref] [Google Scholar]
  66. Stecconi M. 2022.. Isotropic random spin weighted functions on versus isotropic random fields on . . Theory Probab. Math. Stat. 107::77109
    [Crossref] [Google Scholar]
  67. Vittorio N. 2018. Cosmology. Boca Raton, FL:: CRC
  68. Zürcher D, Fluri J, Sgier R, Kacprzak T, Refregier A. 2021.. Cosmological forecasts for non-Gaussian statistics in large-scale weak lensing surveys. . J. Cosmol. Astropart. Phys. 2021:(01):028
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-statistics-040522-093748
Loading
/content/journals/10.1146/annurev-statistics-040522-093748
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error