1932

Abstract

The dark energy plus cold dark matter (ΛCDM) cosmological model has been a demonstrably successful framework for predicting and explaining the large-scale structure of the Universe and its evolution with time. Yet on length scales smaller than ∼1 Mpc and mass scales smaller than ∼1011M, the theory faces a number of challenges. For example, the observed cores of many dark matter–dominated galaxies are both less dense and less cuspy than naïvely predicted in ΛCDM. The number of small galaxies and dwarf satellites in the Local Group is also far below the predicted count of low-mass dark matter halos and subhalos within similar volumes. These issues underlie the most well-documented problems with ΛCDM: cusp/core, missing satellites, and too-big-to-fail. The key question is whether a better understanding of baryon physics, dark matter physics, or both is required to meet these challenges. Other anomalies, including the observed planar and orbital configurations of Local Group satellites and the tight baryonic/dark matter scaling relations obeyed by the galaxy population, have been less thoroughly explored in the context of ΛCDM theory. Future surveys to discover faint, distant dwarf galaxies and to precisely measure their masses and density structure hold promising avenues for testing possible solutions to the small-scale challenges going forward. Observational programs to constrain or discover and characterize the number of truly dark low-mass halos are among the most important, and achievable, goals in this field over the next decade. These efforts will either further verify the ΛCDM paradigm or demand a substantial revision in our understanding of the nature of dark matter.

Associated Article

There are media items related to this article:
Small-Scale Challenges to the ΛCDM Paradigm: Figure 7b

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Small-Scale Challenges to the CDM Paradigm
Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-091916-055313
2017-08-18
2024-07-03
Loading full text...

Full text loading...

/deliver/fulltext/astro/55/1/annurev-astro-091916-055313.html?itemId=/content/journals/10.1146/annurev-astro-091916-055313&mimeType=html&fmt=ahah

Literature Cited

  1. Aaronson M. 1983. Ap. J. Lett. 266:L11–15 [Google Scholar]
  2. Abazajian K. 2006. Phys. Rev. D 73:063506 [Google Scholar]
  3. Ackermann M, Albert A, Anderson B. et al. 2015. Phys. Rev. Lett. 115:231301 [Google Scholar]
  4. Adhikari R, Agostini M, Ky NA. et al. 2017. J. Cosmol. Astropart. Phys. 2017:025 [Google Scholar]
  5. Ahmed SH, Brooks AM, Christensen CR. 2017. MNRAS 466:3119–32 [Google Scholar]
  6. Alam SMK, Bullock JS, Weinberg DH. 2002. Ap. J. 572:34–40 [Google Scholar]
  7. Anderhalden D, Schneider A, Macciò AV, Diemand J, Bertone G. 2013. J. Cosmol. Astropart. Phys. 3:014 [Google Scholar]
  8. Arraki KS, Klypin A, More S, Trujillo-Gomez S. 2014. MNRAS 438:1466–82 [Google Scholar]
  9. Bahl H, Baumgardt H. 2014. MNRAS 438:2916–23 [Google Scholar]
  10. Baldry IK, Driver SP, Loveday J. et al. 2012. MNRAS 421:621–34 [Google Scholar]
  11. Behroozi PS, Wechsler RH, Conroy C. 2013. Ap. J. Lett. 762L31 [Google Scholar]
  12. Benítez-Llambay A, Navarro JF, Abadi MG. et al. 2013. Ap. J. Lett. 763L41 [Google Scholar]
  13. Benson AJ, Bower RG, Frenk CS. et al. 2003. Ap. J. 599:38–49 [Google Scholar]
  14. Benson AJ, Lacey CG, Baugh CM, Cole S, Frenk CS. 2002. MNRAS 333:156–76 [Google Scholar]
  15. Bernardi M, Meert A, Sheth RK. et al. 2013. MNRAS 436:697–704 [Google Scholar]
  16. Bertschinger E. 2006. Phys. Rev. D 74:063509 [Google Scholar]
  17. Bland-Hawthorn J, Gerhard O. 2016. Annu. Rev. Astron. Astrophys. 54:529–96 [Google Scholar]
  18. Blitz L, Spergel DN, Teuben PJ, Hartmann D, Burton WB. 1999. Ap. J. 514:818–43 [Google Scholar]
  19. Blumenthal GR, Faber SM, Primack JR, Rees MJ. 1984. Nature 311:517–25 [Google Scholar]
  20. Bode P, Ostriker JP, Turok N. 2001. Ap. J. 556:93–107 [Google Scholar]
  21. Bond JR, Cole S, Efstathiou G, Kaiser N. 1991. Ap. J. 379:440–60 [Google Scholar]
  22. Bosma A. 1978. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types PhD Thesis, Univ. Groningen, Groningen [Google Scholar]
  23. Bovill MS, Ricotti M. 2009. Ap. J. 693:1859–70 [Google Scholar]
  24. Boyarsky A, Ruchayskiy O, Iakubovskyi D, Franse J. 2014. Phys. Rev. Lett. 113:251301 [Google Scholar]
  25. Boylan-Kolchin M, Bullock JS, Kaplinghat M. 2011. MNRAS 415:L40–44 [Google Scholar]
  26. Boylan-Kolchin M, Bullock JS, Kaplinghat M. 2012. MNRAS 422:1203–18 [Google Scholar]
  27. Boylan-Kolchin M, Springel V, White SDM, Jenkins A. 2010. MNRAS 406:896–912 [Google Scholar]
  28. Bozek B, Boylan-Kolchin M, Horiuchi S. et al. 2016. MNRAS 459:1489–504 [Google Scholar]
  29. Brook CB, Di Cintio A. 2015. MNRAS 450:3920–34 [Google Scholar]
  30. Brook CB, Santos-Santos I, Stinson G. 2016. MNRAS 459:638–45 [Google Scholar]
  31. Brooks A. 2014. Ann. Phys. 526:294–308 [Google Scholar]
  32. Brooks AM, Papastergis E, Christensen CR. et al. 2017. arXivv:1701.07835
  33. Brooks AM, Zolotov A. 2014. Ap. J. 786:87 [Google Scholar]
  34. Bryan GL, Norman ML. 1998. Ap. J. 495:80–99 [Google Scholar]
  35. Buck T, Dutton AA, Macciò AV. 2016. MNRAS 460:44348–65 [Google Scholar]
  36. Bulbul E, Markevitch M, Foster A. et al. 2014. Ap. J. 789:13 [Google Scholar]
  37. Bullock JS, Kolatt TS, Sigad Y. et al. 2001. MNRAS 321:559–75 [Google Scholar]
  38. Bullock JS, Kravtsov AV, Weinberg DH. 2000. Ap. J. 539:517–21 [Google Scholar]
  39. Burkert A. 1995. Ap. J. Lett. 447:L25–28 [Google Scholar]
  40. Calore F, De Romeri V, Di Mauro M, Donato F, Marinacci F. 2016. J. Cosmol. Astropart. Phys. Submitted arXiv:1611.03503 [Google Scholar]
  41. Carlberg RG. 2009. Ap. J. Lett. 705:L223–26 [Google Scholar]
  42. Carlin JL, Sand DJ, Price P. et al. 2016. Ap. J. Lett. 828:L5 [Google Scholar]
  43. Carlson ED, Machacek ME, Hall LJ. 1992. Ap. J. 398:43–52 [Google Scholar]
  44. Chan TK, Kereš D, Oñorbe J. et al. 2015. MNRAS 454:2981–3001 [Google Scholar]
  45. Cole S. 1991. Ap. J. 367:45–53 [Google Scholar]
  46. Conn AR, Lewis GF, Ibata RA. et al. 2013. Ap. J. 766:120 [Google Scholar]
  47. Conroy C, Wechsler RH, Kravtsov AV. 2006. Ap. J. 647:201–14 [Google Scholar]
  48. Creasey P, Sameie O, Sales LV. et al. 2017. MNRAS 468:2283–95 [Google Scholar]
  49. Crnojević D, Sand DJ, Zaritsky D. et al. 2016. Ap. J. Lett. 824:L14 [Google Scholar]
  50. Cyr-Racine FY, Sigurdson K, Zavala J. et al. 2016. Phys. Rev. D 93:123527 [Google Scholar]
  51. Dalcanton JJ, Spergel DN, Gunn JE, Schmidt M, Schneider DP. 1997. Astron. J. 114:635–54 [Google Scholar]
  52. Davis M, Efstathiou G, Frenk CS, White SDM. 1985. Ap. J. 292:371–94 [Google Scholar]
  53. de Blok WJG, Walter F, Brinks E. et al. 2008. Astron. J. 136:2648–719 [Google Scholar]
  54. Del Popolo A, Le Delliou M. 2016. arXiv:1606.07790
  55. Di Cintio A, Brook CB, Macciò AV. et al. 2014. MNRAS 437:415–23 [Google Scholar]
  56. Diemand J, Kuhlen M, Madau P. et al. 2008. Nature 454:735–38 [Google Scholar]
  57. Diemer B, Kravtsov AV. 2015. Ap. J. 799:108 [Google Scholar]
  58. Dodelson S, Widrow LM. 1994. Phys. Rev. Lett. 72:17–20 [Google Scholar]
  59. D'Onghia E, Springel V, Hernquist L, Keres D. 2010. Ap. J. 709:1138–47 [Google Scholar]
  60. Drlica-Wagner A, Bechtol K, Rykoff ES. et al. 2015. Ap. J. 813:109 [Google Scholar]
  61. Dubinski J, Carlberg RG. 1991. Ap. J. 378:496–503 [Google Scholar]
  62. Dutton AA, Macciò AV. 2014. MNRAS 441:3359–74 [Google Scholar]
  63. Dutton AA, Macciò AV, Frings J. et al. 2016. MNRAS 457:L74–78 [Google Scholar]
  64. Efstathiou G. 1992. MNRAS 256:43P–47P [Google Scholar]
  65. Einasto J. 1965. Trudy Astrofizicheskogo Inst. Alma-Ata 5:87–100 [Google Scholar]
  66. Elbert OD, Bullock JS, Garrison-Kimmel S. et al. 2015. MNRAS 453:29–37 [Google Scholar]
  67. Elbert OD, Bullock JS, Kaplinghat M. et al. 2016. MNRAS Submitted arXiv:1609.08626 [Google Scholar]
  68. Faber SM, Lin DNC. 1983. Ap. J. Lett. 266:L17–20 [Google Scholar]
  69. Feng JL. 2010. Annu. Rev. Astron. Astrophys. 48:495–545 [Google Scholar]
  70. Feng JL, Kumar J. 2008. Phys. Rev. Lett. 101:231301 [Google Scholar]
  71. Ferrero I, Abadi MG, Navarro JF, Sales LV, Gurovich S. 2012. MNRAS 425:2817–23 [Google Scholar]
  72. Fitts A, Boylan-Kolchin M, Elbert OD. et al. 2016. MNRAS Submitted arXiv:1611.02281 [Google Scholar]
  73. Flores RA, Primack JR. 1994. Ap. J. Lett. 427:L1–4 [Google Scholar]
  74. Freeman KC. 1970. Ap. J. 160:811 [Google Scholar]
  75. Frenk CS, White SDM. 2012. Ann. Phys. 524:507–34 [Google Scholar]
  76. Frenk CS, White SDM, Davis M, Efstathiou G. 1988. Ap. J. 327:507–25 [Google Scholar]
  77. Fry AB, Governato F, Pontzen A. et al. 2015. MNRAS 452:1468–79 [Google Scholar]
  78. Gao L, Navarro JF, Cole S. et al. 2008. MNRAS 387:536–44 [Google Scholar]
  79. Garrison-Kimmel S, Boylan-Kolchin M, Bullock JS, Lee K. 2014. MNRAS 438:2578–96 [Google Scholar]
  80. Garrison-Kimmel S, Bullock JS, Boylan-Kolchin M, Bardwell E. 2017a. MNRAS 464:3108–20 [Google Scholar]
  81. Garrison-Kimmel S, Wetzel AR, Bullock JS. et al. 2017b. MNRAS Submitted arXiv:1701.03792 [Google Scholar]
  82. Ghigna S, Moore B, Governato F. et al. 1998. MNRAS 300:146–62 [Google Scholar]
  83. Gillet N, Ocvirk P, Aubert D. et al. 2015. Ap. J. 800:34 [Google Scholar]
  84. Giovanelli R, Haynes MP, Adams EAK. et al. 2013. Astron. J. 146:15 [Google Scholar]
  85. Gnedin OY, Zhao H. 2002. MNRAS 333:299–306 [Google Scholar]
  86. Governato F, Zolotov A, Pontzen A. et al. 2012. MNRAS 422:1231–40 [Google Scholar]
  87. Green AM, Hofmann S, Schwarz DJ. 2004. MNRAS 353:L23–27 [Google Scholar]
  88. Griffen BF, Ji AP, Dooley GA. et al. 2016. Ap. J. 818:10 [Google Scholar]
  89. Gunn JE, Gott JRI. 1972. Ap. J. 176:1 [Google Scholar]
  90. Guo H, Zheng Z, Behroozi PS. et al. 2016. MNRAS 459:3040–58 [Google Scholar]
  91. Hargis JR, Willman B, Peter AHG. 2014. Ap. J. Lett. 795:L13 [Google Scholar]
  92. Hezaveh Y, Dalal N, Holder G. et al. 2013. Ap. J. 767:9 [Google Scholar]
  93. Hezaveh YD, Dalal N, Marrone DP. 2016. Ap. J. 823:37 [Google Scholar]
  94. Hofmann S, Schwarz DJ, Stöcker H. 2001. Phys. Rev. D 64:083507 [Google Scholar]
  95. Hopkins PF, Keres D, Oñorbe J. et al. 2014. MNRAS 445:581–603 [Google Scholar]
  96. Hopkins PF, Wetzel A, Keres D. et al. 2017. MNRAS Submitted arXiv:1702.06148 [Google Scholar]
  97. Horiuchi S, Humphrey PJ, Oñorbe J. et al. 2014. Phys. Rev. D 89:025017 [Google Scholar]
  98. Ibata RA, Famaey B, Lewis GF, Ibata NG, Martin N. 2015. Ap. J. 805:67 [Google Scholar]
  99. Ibata RA, Lewis GF, Conn AR. et al. 2013. Nature 493:62–65 [Google Scholar]
  100. Ibata RA, Lewis GF, Irwin MJ, Quinn T. 2002. MNRAS 332:915–20 [Google Scholar]
  101. Impey C, Bothun G, Malin D. 1988. Ap. J. 330:634–60 [Google Scholar]
  102. Jethwa P, Erkal D, Belokurov V. 2016. MNRAS 461:2212–33 [Google Scholar]
  103. Jing YP. 2000. Ap. J. 535:30–36 [Google Scholar]
  104. Jungman G, Kamionkowski M, Griest K. 1996. Phys. Rep. 267:195–373 [Google Scholar]
  105. Kang X, Mao S, Gao L, Jing YP. 2005. Astron. Astrophys. 437:383–88 [Google Scholar]
  106. Kaplinghat M, Tulin S, Yu HB. 2016. Phys. Rev. Lett. 116:041302 [Google Scholar]
  107. Kawasaki M, Nakayama K. 2013. Annu. Rev. Nucl. Part. Sci. 63:69–95 [Google Scholar]
  108. Keller BW, Wadsley JW. 2017. Ap. J. Lett. 835:L17 [Google Scholar]
  109. Kirby EN, Bullock JS, Boylan-Kolchin M, Kaplinghat M, Cohen JG. 2014. MNRAS 439:1015–27 [Google Scholar]
  110. Klypin A, Gottlöber S, Kravtsov AV, Khokhlov AM. 1999a. Ap. J. 516:530–51 [Google Scholar]
  111. Klypin A, Karachentsev I, Makarov D, Nasonova O. 2015. MNRAS 454:1798–810 [Google Scholar]
  112. Klypin A, Kravtsov AV, Valenzuela O, Prada F. 1999b. Ap. J. 522:82–92 [Google Scholar]
  113. Klypin A, Yepes G, Gottlöber S, Prada F, Heß S. 2016. MNRAS 457:4340–59 [Google Scholar]
  114. Koda J, Yagi M, Yamanoi H, Komiyama Y. 2015. Ap. J. Lett. 807:L2 [Google Scholar]
  115. Kolb EW, Turner MS. 1994. Frontiers in Physics 69 Boulder, CO: Westview [Google Scholar]
  116. Koposov SE, Belokurov V, Torrealba G, Evans NW. 2015. Ap. J. 805:130 [Google Scholar]
  117. Kormendy J, Freeman KC. 2016. Ap. J. 817:84 [Google Scholar]
  118. Kravtsov AV. 2013. Ap. J. Lett. 764:L31 [Google Scholar]
  119. Kravtsov AV, Berlind AA, Wechsler RH. et al. 2004. Ap. J. 609:35–49 [Google Scholar]
  120. Kroupa P, Theis C, Boily CM. 2005. Astron. Astrophys. 431:517–21 [Google Scholar]
  121. Kuhlen M, Madau P, Silk J. 2009. Science 325:970–73 [Google Scholar]
  122. Kuhlen M, Vogelsberger M, Angulo R. 2012. Phys. Dark Univ. 1:50–93 [Google Scholar]
  123. Kunkel WE, Demers S. 1976. The Galaxy and the Local Group RJ Dickens, JE Perry, FG Smith, IR King R. Greenwich Obs. Bull. 182:241 [Google Scholar]
  124. Kuzio de Naray R, McGaugh SS, de Blok WJG. 2008. Ap. J. 676:920–43 [Google Scholar]
  125. Libeskind NI, Frenk CS, Cole S, Jenkins A, Helly JC. 2009. MNRAS 399:550–58 [Google Scholar]
  126. Libeskind NI, Hoffman Y, Tully RB. et al. 2015. MNRAS 452:1052–59 [Google Scholar]
  127. Lin DNC, Faber SM. 1983. Ap. J. Lett. 266:L21–25 [Google Scholar]
  128. Livermore RC, Finkelstein SL, Lotz JM. 2017. Ap. J. Lett. 835:L113 [Google Scholar]
  129. Lovell MR, Eke VR, Frenk CS, Jenkins A. 2011. MNRAS 413:3013–21 [Google Scholar]
  130. Lovell MR, Frenk CS, Eke VR. et al. 2014. MNRAS 439:300–17 [Google Scholar]
  131. Ludlow AD, Bose S, Angulo RE. et al. 2016. MNRAS 460:1214–32 [Google Scholar]
  132. Lynden-Bell D. 1976. MNRAS 174:695–710 [Google Scholar]
  133. Macciò AV, Udrescu SM, Dutton AA. et al. 2016. MNRAS 463:L69–73 [Google Scholar]
  134. Madau P, Shen S, Governato F. 2014. Ap. J. Lett. 789:L17 [Google Scholar]
  135. Marchesini D, D'Onghia E, Chincarini G. et al. 2002. Ap. J. 575:801–13 [Google Scholar]
  136. Mashchenko S, Wadsley J, Couchman HMP. 2008. Science 319:174–77 [Google Scholar]
  137. Massey P, Olsen KAG, Hodge PW. et al. 2007. Astron. J. 133:2393–417 [Google Scholar]
  138. McConnachie AW. 2012. Astron. J. 144:4 [Google Scholar]
  139. McGaugh SS. 2012. Astron. J. 143:40 [Google Scholar]
  140. McGaugh SS. 2015. Can. J. Phys. 93:250–59 [Google Scholar]
  141. McGaugh SS, Lelli F, Schombert JM. 2016. Phys. Rev. Lett. 117:201101 [Google Scholar]
  142. McGaugh SS, Rubin VC, de Blok WJG. 2001. Astron. J. 122:2381–95 [Google Scholar]
  143. McQuinn M. 2016. Annu. Rev. Astron. Astrophys. 54:313–62 [Google Scholar]
  144. Menci N, Grazian A, Castellano M, Sanchez NG. 2016. Ap. J. Lett. 825:L1 [Google Scholar]
  145. Merle A, Schneider A. 2015. Phys. Lett. B 749:283–88 [Google Scholar]
  146. Metz M, Kroupa P, Jerjen H. 2007. MNRAS 374:1125–45 [Google Scholar]
  147. Metz M, Kroupa P, Jerjen H. 2009. MNRAS 394:2223–28 [Google Scholar]
  148. Milgrom M. 2002. New Astron. Rev. 46:741–53 [Google Scholar]
  149. Milgrom M. 2016. arXiv:1610.07538
  150. Mo H, van den Bosch FC, White S. 2010. Galaxy Formation and Evolution. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  151. Moore B. 1994. Nature 370:629–31 [Google Scholar]
  152. Moore B, Ghigna S, Governato F. et al. 1999. Ap. J. Lett. 524:L19–22 [Google Scholar]
  153. More S, Diemer B, Kravtsov AV. 2015. Ap. J. 810:36 [Google Scholar]
  154. Moster BP, Somerville RS, Maulbetsch C. et al. 2010. Ap. J. 710:903–23 [Google Scholar]
  155. Munshi F, Governato F, Brooks AM. et al. 2013. Ap. J. 766:56 [Google Scholar]
  156. Nambu Y, Sasaki M. 1990. Phys. Rev. D 42:3918–24 [Google Scholar]
  157. Navarro JF, Benítez-Llambay A, Fattahi A. et al. 2016. MNRAS Submitted arXiv:1612.06329 [Google Scholar]
  158. Navarro JF, Eke VR, Frenk CS. 1996. MNRAS 283:L72–78 [Google Scholar]
  159. Navarro JF, Frenk CS, White SDM. 1997. Ap. J. 490:493–508 [Google Scholar]
  160. Navarro JF, Hayashi E, Power C. et al. 2004. MNRAS 349:1039–51 [Google Scholar]
  161. Navarro JF, Ludlow A, Springel V. et al. 2010. MNRAS 402:21–34 [Google Scholar]
  162. Oh SH, Hunter DA, Brinks E. et al. 2015. Astron. J. 149:180 [Google Scholar]
  163. Oman KA, Navarro JF, Fattahi A. et al. 2015. MNRAS 452:3650–65 [Google Scholar]
  164. Oñorbe J, Boylan-Kolchin M, Bullock JS. et al. 2015. MNRAS 454:2092–106 [Google Scholar]
  165. Papastergis E, Giovanelli R, Haynes MP, Shankar F. 2015. Astron. Astrophys. 574:A113 [Google Scholar]
  166. Papastergis E, Ponomareva AA. 2017. Astron. Astrophys. 601:A1 [Google Scholar]
  167. Papastergis E, Shankar F. 2016. Astron. Astrophys. 591:A58 [Google Scholar]
  168. Pawlowski MS. 2016. MNRAS 456:448–58 [Google Scholar]
  169. Pawlowski MS, Famaey B, Merritt D, Kroupa P. 2015a. Ap. J. 815:19 [Google Scholar]
  170. Pawlowski MS, Kroupa P. 2013. MNRAS 435:2116–31 [Google Scholar]
  171. Pawlowski MS, McGaugh SS, Jerjen H. 2015b. MNRAS 453:1047–61 [Google Scholar]
  172. Pawlowski MS, Pflamm-Altenburg J, Kroupa P. 2012. MNRAS 423:1109–26 [Google Scholar]
  173. Peebles PJE. 1982. Ap. J. Lett. 263:L1–5 [Google Scholar]
  174. Peebles PJE. 2012. Annu. Rev. Astron. Astrophys. 50:1–28 [Google Scholar]
  175. Peter AHG, Rocha M, Bullock JS, Kaplinghat M. 2013. MNRAS 430:105–20 [Google Scholar]
  176. Phillips JI, Cooper MC, Bullock JS, Boylan-Kolchin M. 2015. MNRAS 453:3839–47 [Google Scholar]
  177. Ade PAR, Aghanim N, Arnaud M, Ashdown M. Planck Collab. et al. 2016. Astron. Astrophys 594:A13 [Google Scholar]
  178. Polisensky E, Ricotti M. 2011. Phys. Rev. D 83:043506 [Google Scholar]
  179. Pontzen A, Governato F. 2012. MNRAS 421:3464–71 [Google Scholar]
  180. Porter TA, Johnson RP, Graham PW. 2011. Annu. Rev. Astron. Astrophys. 49:155–94 [Google Scholar]
  181. Press WH, Schechter P. 1974. Ap. J. 187:425–38 [Google Scholar]
  182. Primack JR. 2012. Ann. Phys. 524:535–44 [Google Scholar]
  183. Read JI. 2014. J. Phys. G Nucl. Phys. 41:063101 [Google Scholar]
  184. Read JI, Agertz O, Collins MLM. 2016. MNRAS 459:2573–90 [Google Scholar]
  185. Rees MJ, Ostriker JP. 1977. MNRAS 179:541–59 [Google Scholar]
  186. Richardson JC, Irwin MJ, McConnachie AW. et al. 2011. Ap. J. 732:76 [Google Scholar]
  187. Rocha M, Peter AHG, Bullock JS. et al. 2013. MNRAS 430:81–104 [Google Scholar]
  188. Rodríguez-Puebla A, Behroozi P, Primack J. et al. 2016. MNRAS 462:893–916 [Google Scholar]
  189. Rubin VC, Ford WK Jr., Thonnard N. 1980. Ap. J. 238:471–87 [Google Scholar]
  190. Rubin VC, Thonnard N, Ford WK Jr. 1978. Ap. J. Lett. 225:L107–11 [Google Scholar]
  191. Sales LV, Navarro JF, Kallivayalil N, Frenk CS. 2017. MNRAS 465:1879–88 [Google Scholar]
  192. Sand DJ, Crnojević D, Bennet P. et al. 2015a. Ap. J. 806:95 [Google Scholar]
  193. Sand DJ, Spekkens K, Crnojević D. et al. 2015b. Ap. J. Lett. 812:L13 [Google Scholar]
  194. Sawala T, Frenk CS, Fattahi A. et al. 2016. MNRAS 457:1931–43 [Google Scholar]
  195. Schaye J, Crain RA, Bower RG. et al. 2015. MNRAS 446:521–54 [Google Scholar]
  196. Schneider A, Smith RE, Macciò AV, Moore B. 2012. MNRAS 424:684–98 [Google Scholar]
  197. Schneider A, Trujillo-Gomez S, Papastergis E, Reed DS, Lake G. 2016. MNRAS Submitted arXiv:1611.09362 [Google Scholar]
  198. Schultz C, Oñorbe J, Abazajian KN, Bullock JS. 2014. MNRAS 442:1597–609 [Google Scholar]
  199. Sheth RK, Mo HJ, Tormen G. 2001. MNRAS 323:1–12 [Google Scholar]
  200. Shi X, Fuller GM. 1999. Phys. Rev. Lett. 82:2832–35 [Google Scholar]
  201. Simon JD, Bolatto AD, Leroy A, Blitz L, Gates EL. 2005. Ap. J. 621:757–76 [Google Scholar]
  202. Simon JD, Geha M, Minor QE. et al. 2011. Ap. J. 733:46 [Google Scholar]
  203. Skillman ED, Monelli M, Weisz DR. et al. 2016. arXiv:1606.01207
  204. Somerville RS, Davé R. 2015. Annu. Rev. Astron. Astrophys. 53:51–113 [Google Scholar]
  205. Spergel DN, Steinhardt PJ. 2000. Phys. Rev. Lett. 84:3760–63 [Google Scholar]
  206. Springel V, Wang J, Vogelsberger M. et al. 2008. MNRAS 391:1685–711 [Google Scholar]
  207. Stadel J, Potter D, Moore B. et al. 2009. MNRAS 398:L21–25 [Google Scholar]
  208. Strigari LE. 2013. Phys. Rep. 531:1–88 [Google Scholar]
  209. Strigari LE, Bullock JS, Kaplinghat M. et al. 2008. Nature 454:1096–97 [Google Scholar]
  210. Tollerud EJ, Boylan-Kolchin M, Bullock JS. 2014. MNRAS 440:3511–19 [Google Scholar]
  211. Tollerud EJ, Bullock JS, Strigari LE, Willman B. 2008. Ap. J. 688:277–89 [Google Scholar]
  212. Tollerud EJ, Geha MC, Grcevich J. et al. 2016. Ap. J. 827:89 [Google Scholar]
  213. Tollet E, Macciò AV, Dutton AA. et al. 2016. MNRAS 456:3542–52 [Google Scholar]
  214. Tomozeiu M, Mayer L, Quinn T. 2016. Ap. J. Lett. 827:L15 [Google Scholar]
  215. Tremaine S, Gunn JE. 1979. Phys. Rev. Lett. 42:407–10 [Google Scholar]
  216. Trujillo-Gomez S, Schneider A, Papastergis E, Reed DS, Lake G. 2016. MNRAS Submitted arXiv:1610.09335 [Google Scholar]
  217. Tully RB, Libeskind NI, Karachentsev ID. et al. 2015. Ap. J. Lett. 802:L25 [Google Scholar]
  218. van Dokkum PG, Abraham R, Merritt A. et al. 2015. Ap. J. Lett. 798:L45 [Google Scholar]
  219. Vegetti S, Koopmans LVE, Bolton A, Treu T, Gavazzi R. 2010. MNRAS 408:1969–81 [Google Scholar]
  220. Vegetti S, Lagattuta DJ, McKean JP. et al. 2012. Nature 481:341–43 [Google Scholar]
  221. Venumadhav T, Cyr-Racine FY, Abazajian KN, Hirata CM. 2016. Phys. Rev. D 94:043515 [Google Scholar]
  222. Viel M, Becker GD, Bolton JS, Haehnelt MG. 2013. Phys. Rev. D 88:043502 [Google Scholar]
  223. Viel M, Lesgourgues J, Haehnelt MG, Matarrese S, Riotto A. 2005. Phys. Rev. D 71:063534 [Google Scholar]
  224. Vogelsberger M, Genel S, Springel V. et al. 2014. MNRAS 444:1518–47 [Google Scholar]
  225. Vogelsberger M, Zavala J, Cyr-Racine FY. et al. 2016. MNRAS 460:1399–416 [Google Scholar]
  226. Vogelsberger M, Zavala J, Loeb A. 2012. MNRAS 423:3740–52 [Google Scholar]
  227. Walker MG, Mateo M, Olszewski EW. et al. 2009. Ap. J. 704:1274–87 [Google Scholar]
  228. Walker MG, Peñarrubia J. 2011. Ap. J. 742:20 [Google Scholar]
  229. Wechsler RH, Bullock JS, Primack JR, Kravtsov AV, Dekel A. 2002. Ap. J. 568:52–70 [Google Scholar]
  230. Weinberg DH, Bullock JS, Governato F, Kuzio de Naray R, Peter AHG. 2015. PNAS 112:12249–55 [Google Scholar]
  231. Weinberg DH, Mortonson MJ, Eisenstein DJ. et al. 2013. Phys. Rep. 530:87–255 [Google Scholar]
  232. Wetzel AR, Hopkins PF, Kim Jh. et al. 2016. Ap. J. Lett. 827:L23 [Google Scholar]
  233. Wheeler C, Oñorbe J, Bullock JS. et al. 2015. MNRAS 453:1305–16 [Google Scholar]
  234. White SDM, Frenk CS. 1991. Ap. J. 379:52–79 [Google Scholar]
  235. White SDM, Frenk CS, Davis M. 1983. Ap. J. Lett. 274:L1–5 [Google Scholar]
  236. White SDM, Rees MJ. 1978. MNRAS 183:341–58 [Google Scholar]
  237. Willman B. 2010. Adv. Astron. 2010:285454 [Google Scholar]
  238. Willman B, Strader J. 2012. Astron. J. 144:76 [Google Scholar]
  239. Wolf J, Martinez GD, Bullock JS. et al. 2010. MNRAS 406:1220–37 [Google Scholar]
  240. Wright AH, Robotham ASG, Driver SP. et al. 2017. MNRAS Accepted arXiv:1705.04074 [Google Scholar]
  241. Yoon JH, Johnston KV, Hogg DW. 2011. Ap. J. 731:58 [Google Scholar]
  242. Zavala J, Jing YP, Faltenbacher A. et al. 2009. Ap. J. 700:1779–93 [Google Scholar]
  243. Zavala J, Springel V, Boylan-Kolchin M. 2010. MNRAS 405:593–612 [Google Scholar]
  244. Zentner AR. 2007. Int. J. Mod. Phys. D 16:763–815 [Google Scholar]
  245. Zentner AR, Kravtsov AV, Gnedin OY, Klypin AA. 2005. Ap. J. 629:219–32 [Google Scholar]
  246. Zolotov A, Brooks AM, Willman B. et al. 2012. Ap. J. 761:71 [Google Scholar]
  247. Zwicky F. 1933. Helv. Phys. Acta 6:110–27 [Google Scholar]
/content/journals/10.1146/annurev-astro-091916-055313
Loading
/content/journals/10.1146/annurev-astro-091916-055313
Loading

Data & Media loading...

    The missing satellites problem: predicted ΛCDM substructure () versus known MW satellites (). Panel (by M. Pawlowski in collaboration with the authors) shows the current census of MW satellite galaxies, with galaxies discovered since 2015 in red. The Galactic disk is represented by a circle of radius 15 kpc at the center, and the outer sphere has a radius of 250 kpc. The 11 brightest (classical) MW satellites are labeled by name. Sizes of the symbols are not to scale but are rather proportional to the log of each satellite galaxy's stellar mass. Currently, there are ∼50 satellite galaxies known in the MW as compared to thousands of predicted subhalos with ≳107M. Abbreviations: dSph, dwarf spheroidal; LMC, Large Magellanic Cloud; MW, Milky Way; SMC, Small Magellanic Cloud.

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error