1932

Abstract

Why do animals move the way they do? Bacteria, insects, birds, and fish share with us the necessity to move so as to live. Although each organism follows its own evolutionary course, it also obeys a set of common laws. At the very least, the movement of animals, like that of planets, is governed by Newton's law: All things fall. On Earth, most things fall in air or water, and their motions are thus subject to the laws of hydrodynamics. Through trial and error, animals have found ways to interact with fluid so they can float, drift, swim, sail, glide, soar, and fly. This elementary struggle to escape the fate of falling shapes the development of motors, sensors, and mind. Perhaps we can deduce parts of their neural computations by understanding what animals must do so as not to fall. Here I discuss recent developments along this line of inquiry in the case of insect flight. Asking how often a fly must sense its orientation in order to balance in air has shed new light on the role of motor neurons and steering muscles responsible for flight stability.

Associated Article

There are media items related to this article:
Insect Flight: From Newton's Law to Neurons: Video 2

Associated Article

There are media items related to this article:
Insect Flight: From Newton's Law to Neurons: Video 1
Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031113-133853
2016-03-10
2024-07-03
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/7/1/annurev-conmatphys-031113-133853.html?itemId=/content/journals/10.1146/annurev-conmatphys-031113-133853&mimeType=html&fmt=ahah

Literature Cited

  1. Chang S, Wang ZJ. 1.  2014. PNAS 111:3111246–51 [Google Scholar]
  2. Bergou AJ, Ristroph L, Guckenheimer JM, Cohen I, Wang ZJ. 2.  2010. Phys. Rev. Lett. 104:148101 [Google Scholar]
  3. Collins S, Ruina A, Russ T, Martijn W. 3.  2005. Science 307:1082–85 [Google Scholar]
  4. Cook MV. 4.  1997. Flight Dynamics: Principles London: Arnold [Google Scholar]
  5. Etkin B. 5.  1983. Dynamics of Flight Stability and Control Hoboken, NJ: John Wiley and Sons [Google Scholar]
  6. Wang ZJ, Birch JM, Dickinson MH. 6.  2004. J. Exp. Biol. 207:449–60 [Google Scholar]
  7. Prandtl L, Tietjens OG. 7.  1934. Applied Hydro- and Aeromechanics New York: McGraw-Hill [Google Scholar]
  8. Beatus T, Guckenheimer JM, Cohen I. 8.  2015. J. R. Soc. Interface 12:10520150075 [Google Scholar]
  9. Ristroph L, Ristroph G, Morozova S, Bergou AJ, Chang S. 9.  et al. 2013. J. R. Soc. Interface 10:8520130237 [Google Scholar]
  10. Wu JH, Sun M. 10.  2012. J. R. Soc. Interface 9:742033–46 [Google Scholar]
  11. Faruque I, Humbert JS. 11.  2010. J. Theor. Biol. 264:538–52 [Google Scholar]
  12. Sun M, Wang JK. 12.  2007. J. Exp. Biol. 210:2714–22 [Google Scholar]
  13. Sun M, Xiong Y. 13.  2005. J. Exp. Biol. 208:447–59 [Google Scholar]
  14. Taylor GK, Thomas ALR. 14.  2003. J. Exp. Biol. 206:2803–29 [Google Scholar]
  15. Sun M. 15.  2014. Rev. Mod. Phys. 86:615 [Google Scholar]
  16. Cheng B, Deng X. 16.  2011. IEEE. Trans. Robot. 27:849 [Google Scholar]
  17. Hedrick TL, Cheng B, Deng X. 17.  2009. Science 5924:252–55 [Google Scholar]
  18. Hesselberg T, Lehmann FO. 18.  2007. J. Exp. Biol. 210:4319–34 [Google Scholar]
  19. Ristroph L, Bergou AJ, Ristroph G, Coumes K, Berman G. 19.  et al. 2010. PNAS 107:114820–24 [Google Scholar]
  20. Fry SN, Sayaman R, Dickinson MH. 20.  2003. Science 300:495–98 [Google Scholar]
  21. Reichardt W, Poggio T. 21.  1976. Q. Rev. Biophys. 9:311–75 [Google Scholar]
  22. Ma KY, Chirarattananon P, Fuller SB, Wood RJ. 22.  2013. Science 340:6132603–7 [Google Scholar]
  23. Chang S, Wang ZJ. 22a.  2011. The timing in the control of insect flight instability Presented at Annu. Meet. APS Fluid Dyn., 64th, Baltimore [Google Scholar]
  24. Wang ZJ. 23.  2000. J. Fluid Mech. 410:323–41 [Google Scholar]
  25. Wang ZJ. 24.  2000. Phys. Rev. Lett. 85:102035 [Google Scholar]
  26. Wang ZJ, Russell D. 25.  2007. Phys. Rev. Lett. 99:148101 [Google Scholar]
  27. Andersen A, Pesavento U, Wang ZJ. 26.  2005. J. Fluid Mech. 541:65–69 [Google Scholar]
  28. Pesavento U, Wang ZJ. 27.  2004. Phys. Rev. Lett. 93:14144501 [Google Scholar]
  29. Wang ZJ. 28.  2005. Annu. Rev. Fluid Mech. 37:183–210 [Google Scholar]
  30. Ellington CP. 29.  1984. Philos. Trans. R. Soc. Lond. B 305:1–181 [Google Scholar]
  31. Sane S. 30.  2003. J. Exp. Biol. 206:4191–208 [Google Scholar]
  32. Weis-Fogh T, Jensen M. 31.  1953. Proc. R. Soc. B 239:415–58 [Google Scholar]
  33. Lamb H. 32.  Hydrodynamics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  34. Berman G, Wang ZJ. 33.  2007. J. Fluid Mech. 582:153–67 [Google Scholar]
  35. Varshney K, Chang S, Wang ZJ. 34.  2012. Nonlinearity 25:C1–8 [Google Scholar]
  36. Wang ZJ. 35.  2004. J. Exp. Biol. 207:4147–55 [Google Scholar]
  37. Dickson WB, Straw AD, Dickinson MH. 36.  2008. AIAA J. 46:92150–64 [Google Scholar]
  38. Dalton S. 37.  1975. Borne on the Wind New York: Reader's Digest [Google Scholar]
  39. Marey EJ. 38.  1868. C. R. Acad. Sci. Paris 67:1341–45 [Google Scholar]
  40. Greenewalt CH. 39.  1962. Dimensional relationships for flying animals 144:, No. 2: Smithson. Misc. Coll., Washington, DC [Google Scholar]
  41. Fontaine EI, Zabala F, Dickinson MH, Burdick JW. 40.  2009. J. Exp. Biol. 212:1307–23 [Google Scholar]
  42. Hedrick TL. 41.  2008. Bioinspir. Biomimet. 3:034001 [Google Scholar]
  43. Ristroph L, Berman GJ, Bergou AJ, Wang ZJ, Cohen I. 42.  2009. J. Exp. Biol. 212:1324–35 [Google Scholar]
  44. Walker SM, Thomas ALR, Taylor GK. 43.  2009. J. R. Soc. Interface 6:351–66 [Google Scholar]
  45. Hollick FSJ. 44.  1940. Philos. Trans. R. Soc. B 230:357–90 [Google Scholar]
  46. Cheng B, Deng X, Hedrick TL. 45.  2011. J. Exp. Biol. 214:4092–106 [Google Scholar]
  47. Land M, Nilsson DE. 46.  2012. Animal Eyes Oxford, UK: Oxford Univ. Press [Google Scholar]
  48. Taylor GK, Krapp HG. 47.  2007. Adv. Insect Physiol. 34:231–316 [Google Scholar]
  49. Dickinson MH. 48.  2005. Integr. Comp. Biol. 45:274–81 [Google Scholar]
  50. Pringle J. 49.  1957. Insect Flight Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  51. Derham W. 50.  1713. Physico-Theology (Boyle lecture for 1711) London: W. Innys [Google Scholar]
  52. Fraenkel G, Pringle JWS. 51.  1938. Nature 141:919–20 [Google Scholar]
  53. Pringle JWS. 52.  1948. Philos. Trans. R. Soc. B 233:602347–84 [Google Scholar]
  54. Nalbach G. 53.  1993. J. Comp. Physiol. A 173:299–304 [Google Scholar]
  55. Nalbach G. 54.  1994. Neuroscience 61:155–63 [Google Scholar]
  56. Nalbach G, Hengstenberg G. 55.  1994. J. Comp. Physiol. A 175:708–9 [Google Scholar]
  57. Sandeman DC, Markl H. 56.  1980. J. Exp. Biol. 202:1481–90 [Google Scholar]
  58. Faust R. 57.  1952. Zool. Jahr. 63:325–66 [Google Scholar]
  59. Dickinson MH. 58.  1999. Philos. Trans. R. Soc. Lond. B 354:973–80 [Google Scholar]
  60. Chan WP, Dickinson MH. 59.  1996. J. Comp. Neurol. 369:405–18 [Google Scholar]
  61. Strausfeld NJ, Seyan HS. 60.  1985. Cell Tissue Res. 240:601–15 [Google Scholar]
  62. Pflugstaedt H. 61.  1912. Z. wiss. Zool. 100:1–59 [Google Scholar]
  63. Fayyazuddin A, Dickinson MH. 62.  1996. J. Neurosci. 16:5225–32 [Google Scholar]
  64. Tu MS, Dickinson MH. 63.  1996. J. Comp. Physiol. 178:833–45 [Google Scholar]
  65. Heide G. 64.  1983. BIONA report 2, ed. W Nachtigall 35–52 Mainz, Ger: Gustav Fischer Akad. Wiss. [Google Scholar]
  66. Fayyazuddin A, Dickinson MH. 65.  1999. J. Neurophysiol. 82:1916–26 [Google Scholar]
  67. Mayer MK, Vogtmann B, Bausenwein R, Wolf R, Heisenberg M. 66.  1988. J. Comp. Physiol. A 163:389–99 [Google Scholar]
  68. Sherman A, Dickinson MH. 67.  2003. J Exp. Biol. 206:295–302 [Google Scholar]
  69. Heide G, Götz KG. 68.  1996. J. Exp. Biol. 199:1711–26 [Google Scholar]
  70. Wang ZJ, Melfi J Jr. 69.  2015. The initial observations of fruit fly's flight with its Mb1 motor neuron altered 60: No. 21. Presented at Annu. Meet. APS Div. Fluid Dyn., 68th, Boston (Flies are supplied by Troy Shirangi of Janelia Research Campus.) [Google Scholar]
  71. Bottiger EG, Furshpan E. 70.  1952. Biol. Bull. 102:200–11 [Google Scholar]
  72. Chabrier J. 71.  1822. Essai sur le Vol des Insects, et Observations Paris: Kessinger [Google Scholar]
  73. Miyan JA, Ewing AW. 72.  1985. Philos. Trans. R. Soc. Lond. B 311:271–302 [Google Scholar]
  74. Ritter W. 73.  1912. The flying apparatus of the blow-fly Vol. 56, No. 12, Smithson. Misc. Coll., Washington, DC [Google Scholar]
  75. Nachtigall W, Wilson DM. 74.  1967. J. Exp. Biol. 47:77–97 [Google Scholar]
  76. Dickinson MH, Lighton JRB. 75.  1995. Muscle efficiency and elastic storage in the flight motor of Drosophila. Science 128:87–89 [Google Scholar]
  77. Walker SM, Schwyn DA, Mokso R, Wicklein T, Müller T. 76.  et al. 2014. PLOS Biol. 12:e1001823 [Google Scholar]
  78. Dickinson MH, Tu M. 77.  1997. Comp. Biochem. Physiol. 116A:3223–38 [Google Scholar]
  79. Dudley R. 78.  2000. The Biomechanics of Insect Flight: Form, Function, Evolution Princeton, NJ: Princeton Univ. Press [Google Scholar]
  80. Bergou AJ, Xu S, Wang ZJ. 79.  2007. J. Fluid Mech. 591:321–37 [Google Scholar]
  81. Schrödinger E. 80.  1992 (1944). What Is life? Based on 1943 Lectures at Trinity College, Dublin Book version Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  82. White JG, Southgate E, Thomson JN, Brenner S. 81.  1986. Philos. Trans. R. Soc. B 314:11651–340 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031113-133853
Loading
/content/journals/10.1146/annurev-conmatphys-031113-133853
Loading

Data & Media loading...

    A model fly hovers briefly and succumbs to pitching instability. This is an example of flight instability with feedback control (1; also see Section 2).

    With a time-delayed discrete feedback control scheme, the model fly can hover stably (1; also see Section 3.4).

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error