- Home
- A-Z Publications
- Annual Review of Entomology
- Previous Issues
- Volume 67, 2022
Annual Review of Entomology - Volume 67, 2022
Volume 67, 2022
-
-
Pest Biological Control: Goals Throughout My Life
Vol. 67 (2022), pp. 1–10More LessThis autobiography documents the life and accomplishments of Li Liying. Born into a poor family in China, she eventually became director of Guangdong Entomological Institute. After graduating middle school (1949), she was admitted to the Agronomy Faculty at Beijing Agricultural University but was shortly after redirected by the Chinese Government to Timiryazev Agricultural Academy, Moscow, Russia. The last year of her study at Timiryazev Agricultural Academy was a pivotal experience. She had the opportunity to conduct fieldwork on cotton pest control and became aware of the harmful practice of aerially spraying highly toxic organophosphates with workers present. She decided to dedicate herself to finding safer alternatives and became a leader in the development of mass-rearing techniques for insects beneficial to agriculture. She traveled to laboratories in several foreign countries to foster collaboration and exchange of ideas among colleagues. She is recognized for her service to entomological societies, teaching at universities, and love of entomology.
-
-
-
Remembrances of a Honey Bee Biologist
Vol. 67 (2022), pp. 13–25More LessThomas Seeley's research has focused on analyzing the collective intelligence and natural lives of honey bees. This account describes how the author encountered honey bees as a boy and became a beekeeper; how he switched his career path from medicine to biology to study the behavior and social life of honey bees; and how he focuses on understanding how a honey bee colony functions when it lives in the wild, rather than in a beekeeper's hive. He has shown how a honey bee colony works as a single decision-making unit to adaptively allocate its foragers among flower patches and to choose its nesting site in a hollow tree. These findings buttress the view that, in some social insect species, the colony is a group-level vehicle of gene survival. Beyond his research, he has written three books to synthesize these findings for biologists and share these discoveries with beekeepers.
-
-
-
Exotic Ants of the Asia-Pacific: Invasion, National Response, and Ongoing Needs
Vol. 67 (2022), pp. 27–42More LessHuman activity has facilitated the introduction of many exotic species via global trade. Asia-Pacific countries comprise one of the most economically and trade-active regions in the world, which makes it an area that is highly vulnerable to invasive species, including ants. There are currently over 60 exotic ant species in the Asia-Pacific, with the red imported fire ant, Solenopsis invicta, among the most destructive. Exotic ants pose many economic and ecological problems for the region. Countries in the Asia-Pacific have dealt with the problem of exotic ants in very different ways, and there has been an overall lack of preparedness. To improve the management of risks associated with invasive ants, we recommend that countries take action across the biosecurity spectrum, spanning prevention, containment, and quarantine. The creation of an Asia-Pacific network for management of invasive ants should help prevent their introduction and mitigate their impacts.
-
-
-
Biology, Ecology, and Management of the Invasive Longlegged Ant, Anoplolepis gracilipes
Vol. 67 (2022), pp. 43–63More LessThe longlegged ant (Anoplolepis gracilipes) is one of the most damaging invasive tramp ants globally. It is generally found between latitudes 27°N and 27°S in Asia, although it has been introduced to other continents. Its native range remains debatable, but it is believed to be in Southeast Asia. Anoplolepis gracilipes invasion has many serious ecological consequences, especially for native invertebrate, vertebrate, and plant communities, altering ecosystem dynamics and functions. We examine and synthesize the literature about this species’ origin and distribution, impacts on biodiversity and ecosystems, biology and ecology, chemical control, and potential biocontrol agents. We highlight emerging research needs on the origin and invasion history of this species, its reproductive mode, its relationship with myrmecophiles, and its host–microbial interactions, and we discuss future research directions.
-
-
-
The Ecological Significance of Aphid Cornicles and Their Secretions
Vol. 67 (2022), pp. 65–81More LessAphid cornicles are abdominal appendages that secrete an array of volatile and nonvolatile compounds with diverse ecological functions. The emission of alarm pheromones yields altruistic benefits for clone-mates in the aphid colony, which is essentially a superorganism with a collective fate. Secreted droplets also contain unsaturated triglycerides, fast-drying adhesives that can be lethal when smeared on natural enemies but more often impede their foraging efficiency. The longest cornicles have evolved in aphids that feed in exposed locations and are likely used to scent-mark colony intruders. Reduced cornicles are associated with reliance on alternative defenses, such as the secretion of protective waxes or myrmecophily. Root-feeding and gall-forming lifestyles provide protected feeding sites and are associated with an absence of cornicles. In some eusocial gall-formers, soldier morphs become repositories of cornicle secretion used to defend the gall, either as menopausal apterae that defend dispersing alatae or as sterile first instars that dispatch predators with their stylets and use cornicle secretions as a construction material for gall repair. Collectively, the evidence is consistent with an adaptive radiation of derived cornicle functions molded by the ecological lifestyle of the aphid lineage.
-
-
-
The Biology of Aging in Insects: From Drosophila to Other Insects and Back
Vol. 67 (2022), pp. 83–103More LessAn enormous amount of work has been done on aging in Drosophila melanogaster, a classical genetic and molecular model system, but also in numerous other insects. However, these two extensive bodies of work remain poorly integrated to date. Studies in Drosophila often explore genetic, developmental, physiological, and nutrition-related aspects of aging in the lab, while studies in other insects often explore ecological, social, and somatic aspects of aging in both lab and natural populations. Alongside exciting genomic and molecular research advances in aging in Drosophila, many new studies have also been published on aging in various other insects, including studies on aging in natural populations of diverse species. However, no broad synthesis of these largely separate bodies of work has been attempted. In this review, we endeavor to synthesize these two semi-independent literatures to facilitate collaboration and foster the exchange of ideas and research tools. While lab studies of Drosophila have illuminated many fundamental aspects of senescence, the stunning diversity of aging patterns among insects, especially in the context of their rich ecology, remains vastlyunderstudied. Coupled with field studies and novel, more easily applicable molecular methods, this represents a major opportunity for deepening our understanding of the biology of aging in insects and beyond.
-
-
-
The Role of Cytochrome P450s in Insect Toxicology and Resistance
Vol. 67 (2022), pp. 105–124More LessInsect cytochrome P450 monooxygenases (P450s) perform a variety of important physiological functions, but it is their role in the detoxification of xenobiotics, such as natural and synthetic insecticides, that is the topic of this review. Recent advances in insect genomics and postgenomic functional approaches have provided an unprecedented opportunity to understand the evolution of insect P450s and their role in insect toxicology. These approaches have also been harnessed to provide new insights into the genomic alterations that lead to insecticide resistance, the mechanisms by which P450s are regulated, and the functional determinants of P450-mediated insecticide resistance. In parallel, an emerging body of work on the role of P450s in defining the sensitivity of beneficial insects to insecticides has been developed. The knowledge gained from these studies has applications for the management of P450-mediated resistance in insect pests and can be leveraged to safeguard the health of important beneficial insects.
-
-
-
The Molecular Physiology and Toxicology of Inward Rectifier Potassium Channels in Insects
Vol. 67 (2022), pp. 125–142More LessInward rectifier K+ (Kir) channels have been studied extensively in mammals, where they play critical roles in health and disease. In insects, Kir channels have recently been found to be key regulators of diverse physiological processes in several tissues. The importance of Kir channels in insects has positioned them to serve as emerging targets for the development of insecticides with novel modes of action. In this article, we provide the first comprehensive review of insect Kir channels, highlighting the rapid progress made in understanding their molecular biology, physiological roles, pharmacology, and toxicology. In addition, we highlight key gaps in our knowledge and suggest directions for future research to advance our understanding of Kir channels and their roles in insect physiology. Further knowledge of their functional roles will also facilitate their exploitation as targets for controlling arthropod pests and vectors of economic, medical, and/or veterinary relevance.
-
-
-
The Ecology of Hyperparasitoids
Vol. 67 (2022), pp. 143–161More LessHyperparasitoids are some of the most diverse members of insect food webs. True hyperparasitoids parasitize the larvae of other parasitoids, reaching these larvae with their ovipositor through the herbivore that hosts the parasitoid larva. During pupation, primary parasitoids also may be attacked by pseudohyperparasitoids that lay their eggs on the parasitoid (pre)pupae. By attacking primary parasitoids, hyperparasitoids may affect herbivore population dynamics, and they have been identified as a major challenge in biological control. Over the past decades, research, especially on aphid- and caterpillar-associated hyperparasitoids, has revealed that hyperparasitoids challenge rules on nutrient use efficiency in trophic chains, account for herbivore outbreaks, or stabilize competitive interactions in lower trophic levels, and they may use cues derived from complex interaction networks to locate their hosts. This review focuses on the fascinating ecology of hyperparasitoids related to how they exploit and locate their often inconspicuous hosts and the insect community processes in which hyperparasitoids are prominent players.
-
-
-
Sequestration of Plant Defense Compounds by Insects: From Mechanisms to Insect–Plant Coevolution
Vol. 67 (2022), pp. 163–180More LessPlant defense compounds play a key role in the evolution of insect–plant associations by selecting for behavioral, morphological, and physiological insect adaptations. Sequestration, the ability of herbivorous insects to accumulate plant defense compounds to gain a fitness advantage, represents a complex syndrome of adaptations that has evolved in all major lineages of herbivorous insects and involves various classes of plant defense compounds. In this article, we review progress in understanding how insects selectively accumulate plant defense metabolites and how the evolution of specific resistance mechanisms to these defense compounds enables sequestration. These mechanistic considerations are further integrated into the concept of insect–plant coevolution. Comparative genome and transcriptome analyses, combined with approaches based on analytical chemistry that are centered in phylogenetic frameworks, will help to reveal adaptations underlying the sequestration syndrome, which is essential to understanding the influence of sequestration on insect–plant coevolution.
-
-
-
Impact of Stand and Landscape Management on Forest Pest Damage
Vol. 67 (2022), pp. 181–199More LessOne promising approach to mitigate the negative impacts of insect pests in forests is to adapt forestry practices to create ecosystems that are more resistant and resilient to biotic disturbances. At the stand scale, local stand management practices often cause idiosyncratic effects on forest pests depending on the environmental context and the focal pest species. However, increasing tree diversity appears to be a general strategy for reducing pest damage across several forest types. At the landscape scale, increasing forest heterogeneity (e.g., intermixing different forest types and/or age classes) represents a promising frontier for improving forest resistance and resilience and for avoiding large-scale outbreaks. In addition to their greater resilience, heterogeneous forest landscapes frequently support a wide range of ecosystem functions and services. A challenge will be to develop cooperation and coordination among multiple actors at spatial scales that transcend historical practices in forest management.
-
-
-
Beetle–Bacterial Symbioses: Endless Forms Most Functional
Vol. 67 (2022), pp. 201–219More LessBeetles are hosts to a remarkable diversity of bacterial symbionts. In this article, we review the role of these partnerships in promoting beetle fitness following a surge of recent studies characterizing symbiont localization and function across the Coleoptera. Symbiont contributions range from the supplementation of essential nutrients and digestive or detoxifying enzymes to the production of bioactive compounds providing defense against natural enemies. Insights on this functional diversity highlight how symbiosis can expand the host's ecological niche, but also constrain its evolutionary potential by promoting specialization. As bacterial localization can differ within and between beetle clades, we discuss how it corresponds to the microbe's beneficial role and outline the molecular and behavioral mechanisms underlying symbiont translocation and transmission by its holometabolous host. In reviewing this literature, we emphasize how the study of symbiosis can inform our understanding of the phenotypic innovations behind the evolutionary success of beetles.
-
-
-
Vine Weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae), Management: Current State and Future Perspectives
Vol. 67 (2022), pp. 221–238More LessVine weevil, also known as black vine weevil, Otiorhynchus sulcatus, has been one of the most economically important pest species of global horticultural crops for the past five decades. This period has seen many changes in crop protection practices, including wide-scale adoption of biological controls such as entomopathogenic nematodes and fungi in place of conventional synthetic insecticides. Despite the experimental efficacy of these controls, growers continue to report significant crop losses associated with vine weevil infestation. We argue that simply switching from synthetic insecticides to biological controls, rather than using these controls as part of an integrated management program, is a key factor in the continued importance of this pest. An improved understanding of vine weevil biology and ecology is at the center of the development of truly integrated pest management programs. To this end, we identify opportunities created through recent vine weevil research and highlight key knowledge gaps in which further research may contribute to improved future management approaches.
-
-
-
Bottom-Up Forces in Agroecosystems and Their Potential Impact on Arthropod Pest Management
Vol. 67 (2022), pp. 239–259More LessBottom-up effects are major ecological forces in crop–arthropod pest–natural enemy multitrophic interactions. Over the past two decades, bottom-up effects have been considered key levers for optimizing integrated pest management (IPM). Irrigation, fertilization, crop resistance, habitat manipulation, organic management practices, and landscape characteristics have all been shown to trigger marked bottom-up effects and thus impact pest management. In this review, we summarize current knowledge on the role of bottom-up effects in pest management and the associated mechanisms, and discuss several key study cases showing how bottom-up effects practically promote natural pest control. Bottom-up effects on IPM also contribute to sustainable intensification of agriculture in the context of agricultural transition and climate change. Finally, we highlight new research priorities in this important area. Together with top-down forces (biological control), future advances in understanding ecological mechanisms underlying key bottom-up forces could pave the way for developing novel pest management strategies and new optimized IPM programs.
-
-
-
Neuroecology of Alcohol Preference in Drosophila
Vol. 67 (2022), pp. 261–279More LessIn this review, we highlight sources of alcohols in nature, as well as the behavioral and ecological roles that these fermentation cues play in the short lifespan of Drosophila melanogaster. With a focus on neuroethology, we describe the olfactory detection of alcohol as well as ensuing neural signaling within the brain of the fly. We proceed to explain the plethora of behaviors related to alcohol, including attraction, feeding, and oviposition, as well as general effects on aggression and courtship. All of these behaviors are shaped by physiological state and social contexts. In a comparative perspective, we also discuss inter- and intraspecies differences related to alcohol tolerance and metabolism. Lastly, we provide corollaries with other dipteran and coleopteran insect species that also have olfactory systems attuned to ethanol detection and describe ecological and evolutionary directions for further studies of the natural history of alcohol and the fly.
-
-
-
Wax, Wings, and Swarms: Insects and Their Products as Art Media
Vol. 67 (2022), pp. 281–303More LessEvery facet of human culture is in some way affected by our abundant, diverse insect neighbors. Our relationship with insects has been on display throughout the history of art, sometimes explicitly but frequently in inconspicuous ways. This is because artists can depict insects overtly, but they can also allude to insects conceptually or use insect products in a purely utilitarian manner. Insects themselves can serve as art media, and artists have explored or exploited insects for their products (silk, wax, honey, propolis, carmine, shellac, nest material), body parts (e.g., wings), and whole bodies (dead, alive, individually, or as collectives). This review surveys insects and their products used as media in the visual arts and considers the untapped potential for artistic exploration of media derived from insects. The history, value, and ethics of insect media art are relevant topics at a time when the natural world is at unprecedented risk.
-
-
-
Extrinsic Inter- and Intraspecific Competition in Parasitoid Wasps
Vol. 67 (2022), pp. 305–328More LessThe diverse ecology of parasitoids is shaped by extrinsic competition, i.e., exploitative or interference competition among adult females and males for hosts and mates. Adult females use an array of morphological, chemical, and behavioral mechanisms to engage in competition that may be either intra- or interspecific. Weaker competitors are often excluded or, if they persist, use alternate host habitats, host developmental stages, or host species. Competition among adult males for mates is almost exclusively intraspecific and involves visual displays, chemical signals, and even physical combat. Extrinsic competition influences community structure through its role in competitive displacement and apparent competition. Finally, anthropogenic changes such as habitat loss and fragmentation, invasive species, pollutants, and climate change result in phenological mismatches and range expansions within host–parasitoid communities with consequent changes to the strength of competitive interactions. Such changes have important ramifications not only for the success of managed agroecosystems, but also for natural ecosystem functioning.
-
-
-
Defensive Symbionts and the Evolution of Parasitoid Host Specialization
Vol. 67 (2022), pp. 329–346More LessInsect host–parasitoid interactions abound in nature and are characterized by a high degree of host specialization. In addition to their behavioral and immune defenses, many host species rely on heritable bacterial endosymbionts for defense against parasitoids. Studies on aphids and flies show that resistance conferred by symbionts can be very strong and highly specific, possibly as a result of variation in symbiont-produced toxins. I argue that defensive symbionts are therefore an important source of diversifying selection, promoting the evolution of host specialization by parasitoids. This is likely to affect the structure of host–parasitoid food webs. I consider potential changes in terms of food web complexity, although the nature of these effects will also be influenced by whether maternally transmitted symbionts have some capacity for lateral transfer. This is discussed in the light of available evidence for horizontal transmission routes. Finally, I propose that defensive mutualisms other than microbial endosymbionts may also exert diversifying selection on insect parasitoids.
-
-
-
Tribolium castaneum: A Model Insect for Fundamental and Applied Research
Vol. 67 (2022), pp. 347–365More LessTribolium castaneum has a long history as a model species in many distinct subject areas, but improved connections among the genetics, genomics, behavioral, ecological, and pest management fields are needed to fully realize this species’ potential as a model. Tribolium castaneum was the first beetle whose genome was sequenced, and a new genome assembly and enhanced annotation, combined with readily available genomic research tools, have facilitated its increased use in a wide range of functional genomics research. Research into T. castaneum’s sensory systems, response to pheromones and kairomones, and patterns of movement and landscape utilization has improved our understanding of behavioral and ecological processes. Tribolium castaneum has also been a model in the development of pest monitoring and management tactics, including evaluation of insecticide resistance mechanisms. Application of functional genomics approaches to behavioral, ecological, and pest management research is in its infancy but offers a powerful tool that can link mechanism with function and facilitate exploitation of these relationships to better manage this important food pest.
-
Previous Volumes
-
Volume 70 (2025)
-
Volume 69 (2024)
-
Volume 68 (2023)
-
Volume 67 (2022)
-
Volume 66 (2021)
-
Volume 65 (2020)
-
Volume 64 (2019)
-
Volume 63 (2018)
-
Volume 62 (2017)
-
Volume 61 (2016)
-
Volume 60 (2015)
-
Volume 59 (2014)
-
Volume 58 (2013)
-
Volume 57 (2012)
-
Volume 56 (2011)
-
Volume 55 (2010)
-
Volume 54 (2009)
-
Volume 53 (2008)
-
Volume 52 (2007)
-
Volume 51 (2006)
-
Volume 50 (2005)
-
Volume 49 (2004)
-
Volume 48 (2003)
-
Volume 47 (2002)
-
Volume 46 (2001)
-
Volume 45 (2000)
-
Volume 44 (1999)
-
Volume 43 (1998)
-
Volume 42 (1997)
-
Volume 41 (1996)
-
Volume 40 (1995)
-
Volume 39 (1994)
-
Volume 38 (1993)
-
Volume 37 (1992)
-
Volume 36 (1991)
-
Volume 35 (1990)
-
Volume 34 (1989)
-
Volume 33 (1988)
-
Volume 32 (1987)
-
Volume 31 (1986)
-
Volume 30 (1985)
-
Volume 29 (1984)
-
Volume 28 (1983)
-
Volume 27 (1982)
-
Volume 26 (1981)
-
Volume 25 (1980)
-
Volume 24 (1979)
-
Volume 23 (1978)
-
Volume 22 (1977)
-
Volume 21 (1976)
-
Volume 20 (1975)
-
Volume 19 (1974)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1971)
-
Volume 15 (1970)
-
Volume 14 (1969)
-
Volume 13 (1968)
-
Volume 12 (1967)
-
Volume 11 (1966)
-
Volume 10 (1965)
-
Volume 9 (1964)
-
Volume 8 (1963)
-
Volume 7 (1962)
-
Volume 6 (1961)
-
Volume 5 (1960)
-
Volume 4 (1959)
-
Volume 3 (1958)
-
Volume 2 (1957)
-
Volume 1 (1956)
-
Volume 0 (1932)